Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability

نویسندگان

  • Elena Boccardi
  • Anahí Philippart
  • Judith A. Juhasz-Bortuzzo
  • Ana M. Beltrán
  • Giorgia Novajra
  • Chiara Vitale-Brovarone
  • Erdmann Spiecker
  • Aldo R. Boccaccini
چکیده

The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape - both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Modification of Mesoporous Nanosilica with [3-(2-Aminoethylamino) propyl] Trimethoxysilane and Its Application in Drug Delivery

Mesoporous silica nanoparticles with unique structure (SBA-15) were synthesized and modified by [3-(2-Aminoethylamino) propyl] trimethoxysilane (AEAPTMS). The synthesized nanoparticles were characterized by TGA, N‌2‌ adsorption, SEM, FTIR, CHN elemental analysis. The total weight loss for the modified SBA-15 is 15.2% and thermal analysis reveal...

متن کامل

Improvement of Desulfurization Performance of Rhodococcus erythropolis IGTS8 by Assembling Spherical Mesoporous Silica Nanosorbents on the Surface of the Bacterial Cells

MCM-41 mesoporous silica is synthesized based on a self assembly method, using a quaternary ammonium template, CTAB for the adsorption of sulfur compounds from model oil (1.0 mmol/l DBT in dodecane solution). Then the adsorption capability of MCM-41 assembled on the surface of bacterium Rhodococcus erythropolis IGTS8 is examined regarding the improvement of the biodesulfurization process of...

متن کامل

The kinetic parameters of drug compounds adsorption onto mesoporous materials

The discovery of mesoporous molecular sieves, MCM-41, which possesses a regular hexagonalarray of uniform pore openings, aroused a worldwide resurgence in this field. This is not onlybecause it has brought about a series of novel mesoporous materials with various compositionswhich may find applications in catalysis, adsorption, and guest-host chemistry, but also it hasopened a new avenue for cr...

متن کامل

Application of Spherical Mesoporous Silica MCM-41 for Adsorption of Dibenzothiophene (A Sulfur Containing Compound) from Model Oil

Spherical mesoporous silica MCM-41 was synthesized for adsorptive removal of sulfur compounds from fossil fuels using 1mM solution of dibenzothiophene (DBT) in dodecane as model oil. The prepared silica adsorbent has been characterized by nitrogen adsorption-desorption analysis as well as Small Angle X-ray Scattering (SAXS), and transmission and Scanning Electron Microscopy (SEM) methods. R...

متن کامل

Multifunctional materials such as MCM-41÷Fe3O4÷folic acid as drug delivery system.

In this study, MCM-41 mesoporous silica nanoparticles (NPs) and MCM-41÷Fe3O4 mesoporous silica NPs were prepared by sol-gel method using CTAB (cetyltrimethylammonium bromide) as template and TEOS (tetraethyl orthosilicate) as silica precursor in order to use these materials as drug delivery system (DDS) for different biologically active agents. The MCM-41 and MCM-41÷Fe3O4 mesoporous silica NPs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioengineering and biotechnology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015